[完整]AI+云原生应用开发 从设计到部署运维全链路实战与提效教程

Connor 欧意交易所 2024-08-30 44 0

一、为什么今天大家所期待的和当时 APP Store 出现时那样,AIGC 应用的蓬勃发展并没有出现?本质是 AI 的拐点还没有到。(/s/1aZY9-XtoFfHrcmuVupTu_g 提取码:qooj )

第一个原因是大模型的理论研究还不够透彻,深度学习网络仍是一个黑盒。大家只是信仰 Scaling Law 会实现 AGI,不过这并不影响应用场景的落地。举个例子,历史上我们在没有研究透火的原理之前,其实已经用火来推动了人类的发展历程了。大模型发展至今,已经在代码工程、客服、信息搜索、设计等领域落地了大量生产场景。

第二个原因是算力限制和投入产出的考量。我不知道今天在场的多少家公司买了 GPU,在大模型上投入了多少费用,但是产出是否能带来足够的经济效益。好消息是各个云厂商大幅降低了大模型的训练和推理成本,很多公司的 ROI 就立马转正了。另外,AI Infra 在资源利用率、研发效率、业务稳定性上的成熟度远不如云原生的这套基础设施,也缺少开源、商业产品等带来的最佳实践。例如用 GPU 每次调用做一次搜索区间的成本更高,这些都对拐点的到来会产生影响。

第三个原因是合规性、价值观对齐、算法偏见和公平性等的约束。没有这些约束,大模型就会衍生出大量的社会问题、道德问题等。我们和做大模型落地的企业聊,好奇为什么你们在 AI 上落地了这么多场景,为啥外边看不到呢?原因就是要保证合规,放慢了应用上线的节奏。

评论